| yry )( with Open Texts

LINEAR

ALGEBRA
with Applications

Emory University

Math 221

Linear Algebra
Sections 1 & 2

Lectured and adapted by

Le Chen
April 15, 2021

ADAPTABLE | ACCESSIBLE | AFFORDABLE

le.chen@emory.edu
Course page

http://math.emory.edu/~1lchendl/teaching/2021_Spring Math221

by W. Keith Nicholson


le.chen@emory.edu
http://math.emory.edu/~lchen41/teaching/2021_Spring_Math221




Contents

1 Systems of Linear Equations

1.1 Solutions and Elementary Operations . . . . . . . . . .. ... ... ... .. .... 6
1.2 Gaussian Elimination . . . . . . . . . ... 16
1.3 Homogeneous Equations . . . . . . . . ... 28
Supplementary Exercises for Chapter 1 . . . . . . . . . . .. ... ... ... ... 37
2 Matrix Algebra 39
2.1 Matrix Addition, Scalar Multiplication, and Transposition . . . . . .. .. ... .. 40
2.2 Matrix-Vector Multiplication . . . . . . . . . . . ... ... . 53
2.3 Matrix Multiplication . . . . . . . . .. .. 72
2.4 Matrix Inverses . . . . . . oL 91
2.5 Elementary Matrices . . . . . . . . .. 109
2.6 Linear Transformations . . . . . . . . . . . . . . .. e 119
2.7 LU-Factorization . . . . . . . . . . . . . 135
3 Determinants and Diagonalization 147
3.1 The Cofactor Expansion . . . . . . . . . ... .. 148
3.2 Determinants and Matrix Inverses . . . . . . . . . . . ... ... ... 163
3.3 Diagonalization and Eigenvalues . . . . . . . . . .. .. oo oo 178
Supplementary Exercises for Chapter 3 . . . . . . . . . ... ... L. 201
4 Vector Geometry 203
4.1 Vectors and Lines . . . . . . . . . .. 204
4.2 Projections and Planes . . . . . . . . ..o oL 223
4.3 More on the Cross Product . . . . . . . . .. ... 244
4.4 Linear Operators on R3 . . . . . . . . . 251
Supplementary Exercises for Chapter 4 . . . . . . . . . . . .. ... ... ... 260
5 Vector Space R” 263
5.1 Subspaces and Spanning . . . . . . . ... 264
5.2 Independence and Dimension . . . . . . . . . . ... .. oo 273
5.3 Orthogonality . . . . . . . . . . 287
54 Rank of a Matrix . . . . . . . . . e 297



e~

CONTENTS

5.5 Similarity and Diagonalization . . . . . . . . . . ... 0oL

Supplementary Exercises for Chapter 5 . . . . . . . . . . . ... oL

Vector Spaces

6.1 Examples and Basic Properties . . . . . . . .. ... .. o Lo
6.2 Subspaces and Spanning Sets . . . . . .. ...
6.3 Linear Independence and Dimension . . . . . . . . ... ... .. ... .......
6.4 Finite Dimensional Spaces . . . . . . . . . .. L

Supplementary Exercises for Chapter 6 . . . . . . . . . . . ... .. ... ...

Linear Transformations
7.1 Examples and Elementary Properties . . . . . . . . ... ... L oL
7.2 Kernel and Image of a Linear Transformation . . . . ... .. .. ... ... ....

7.3 Isomorphisms and Composition . . . . . . . . ... ..o

Orthogonality
8.1 Orthogonal Complements and Projections . . . . . . . ... ... .. ... .....
8.2 Orthogonal Diagonalization . . . . . . . . . . ... ... ... .. ... ...
8.3 Positive Definite Matrices . . . . . . . . . ..
8.4 QR-Factorization . . . . . . . . . . ..
8.5 Computing Eigenvalues . . . . . . . . . .. .
8.6 The Singular Value Decomposition . . . . . . . . ... ... ...
8.6.1 Singular Value Decompositions . . . . . . . .. ... ... ...
8.6.2 Fundamental Subspaces . . . . . .. ...
8.6.3 The Polar Decomposition of a Real Square Matrix . . . . . . . . . ... ...
8.6.4 The Pseudoinverse of a Matrix . . . . . . . . ... .. ... ... .......

321
322
333
342
354
364

365
366
374
385



400 » CONTENTS

8.1 Orthogonal Complements and Projections

If {vy, ..., vz} is linearly independent in a general vector space, and if v, is not in span{vy, ..., vz},
then {vy, ..., Vi, Viuy1} is independent (Lemma 6.4.1). Here is the analog for orthogonal sets in
R™.

Lemma 8.1.1: Orthogonal Lemma

Let {fi, £, ..., £} be an orthogonal set in R". Given x in R", write

—x_xh g xb e 0 xb
bt = x—qgpfi — g B £
Then:

1. 1 =0fork=1,2, ..., m.

2. If x is not in span{fj, ..., f,}, then £, .1 # 0 and {f}, ..., £,, f,+1} is an orthogonal
set.

Proof. For convenience, write #; = (x-;)/||f;||> for each i. Given 1 <k < m:

fi1-fo=(x—tfy — =ty — - —tufn) - fi
=x-fi—t(fi - f) = —t(f ) = —tm (B - 1)
= x - £ — 1| |
=0
This proves (1), and (2) follows because f,, ] # 0 if x is not in span{f}, ..., £,}. ]

The orthogonal lemma has three important consequences for R”. The first is an extension for
orthogonal sets of the fundamental fact that any independent set is part of a basis (Theorem 6.4.1).

Theorem 8.1.1

Let U be a subspace of R".

1. Every orthogonal subset {fi, ..., £} in U is a subset of an orthogonal basis of U.

2. U has an orthogonal basis.

Proof.
1. If span{fy, ..., f,} = U, it is already a basis. Otherwise, there exists x in U outside
span{fy, ..., f,}. If f,, is as given in the orthogonal lemma, then f,.; is in U and

{f1, ..., £, fy1} is orthogonal. If span{fy, ..., f,, f,+1} = U, we are done. Otherwise,
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the process continues to create larger and larger orthogonal subsets of U. They are all in-
dependent by Theorem 5.3.5, so we have a basis when we reach a subset containing dim U
vectors.

2. If U = {0}, the empty basis is orthogonal. Otherwise, if £ 0 is in U, then {f} is orthogonal,

so (2) follows from (1). 0

We can improve upon (2) of Theorem 8.1.1. In fact, the second consequence of the orthogonal

lemma is a procedure by which any basis {xi, ..., x,,} of a subspace U of R" can be systematically

modified to yield an orthogonal basis {f}, ..., f,} of U. The f; are constructed one at a time from
the x;.

To start the process, take f| = x;. Then x; is not in span {f;} because {x;, x;} is independent,
so take

_ _ xof]
b =x—ph

Thus {f], f,} is orthogonal by Lemma 8.1.1. Moreover, span{fj, £} = span {x;, x,} (verify), so x3
is not in span {f;, f,}. Hence {f}, f,, f3} is orthogonal where

-f x3-f
£, =xy— fig xabhg
3T TRET T RP2

Again, span {f], f;, f3} = span {x], x2, X3}, so x4 is not in span {fj, f5, f3} and the process continues.
At the mth iteration we construct an orthogonal set {f}, ..., f,} such that

span{fy, £, ..., f,,} = span{xy, %2, ..., X} =U

Hence {f}, f5, ..., fi,} is the desired orthogonal basis of U. The procedure can be summarized as
follows.
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Theorem 8.1.2: Gram-Schmidt Orthogonalization Al-

gorithm!
/ %3 If {x1, X2, ..., X} is any basis of a subspace U of R",
construct fi, b, ..., £, in U successively as follows:
0 > 1
span{fj, >} f2 — x— ﬂifz‘luéfl
_ _x3fi e x36
Gram-Schmidt 5= x HleZﬂ ||f2||2f2
-fi x5 Xp- B
£ = xxbipg xbpe & Xboipe
f k TR T s 2 T2 1

for each k=2, 3, , m. Then

0 % . \ 1. {fi, b, ..., £,} is an orthogonal basis of U.
1

span {f1, £} 2. span{fi, b, ..., i} = span{xy, x», ..., X;} for each
k=1, 2, ..., m.

The process (for k = 3) is depicted in the diagrams. Of course, the algorithm converts any basis
of R" itself into an orthogonal basis.

Example 8.1.1

I 1 -1 —1
Find an orthogonal basis of the row spaceof A= |3 2 0 1
1o 1 0

Solution. Let x1, X;, x3 denote the rows of A and observe that {xj, xp, x3} is linearly
independent. Take f; =x;. The algorithm gives

fzzxz—ﬁ‘é'ﬁgfl =(3,2,0, )41, 1, -1, -1)=(2, 1, 1, 2)

f x3-f 0 3 1
f =X _Mf _#f =X __f __f 1 4’ _3, 7’ _6
3=%3— el — gt =% — 2fi — 52 = 1o )

Hence {(1, 1, =1, —1), (2, 1, 1, 2), %(4, —3, 7, —6)} is the orthogonal basis provided by
the algorithm. In hand calculations it may be convenient to eliminate fractions (see the
Remark below), so {(1, 1, —1, —1), (2, 1, 1, 2), (4, =3, 7, —6)} is also an orthogonal
basis for row A.

!Erhardt Schmidt (1876-1959) was a German mathematician who studied under the great David Hilbert and later
developed the theory of Hilbert spaces. He first described the present algorithm in 1907. Joérgen Pederson Gram
(1850-1916) was a Danish actuary.
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Remark
Observe that the vector ﬁfl is unchanged if a nonzero scalar multiple of f; is used in place of f;.
Hence, if a newly constructed f; is multiplied by a nonzero scalar at some stage of the Gram-Schmidt

algorithm, the subsequent fs will be unchanged. This is useful in actual calculations.

Projections

Suppose a point x and a plane U through the origin in R? are given,
and we want to find the point p in the plane that is closest to x.
Our geometric intuition assures us that such a point p exists. In
fact (see the diagram), p must be chosen in such a way that x —p is
perpendicular to the plane.

Now we make two observations: first, the plane U is a subspace
of R3 (because U contains the origin); and second, that the condition that x —p is perpendicular
to the plane U means that x — p is orthogonal to every vector in U. In these terms the whole
discussion makes sense in R”". Furthermore, the orthogonal lemma provides exactly what is needed
to find p in this more general setting.

Definition 8.1 Orthogonal Complement of a Subspace of R"

If U is a subspace of R", define the orthogonal complement U~ of U (pronounced

{‘U_perp”) by
Ut ={xinR"|x-y=0 forall y in U}

The following lemma collects some useful properties of the orthogonal complement; the proof of
(1) and (2) is left as Exercise 8.1.6.

Lemma 8.1.2
Let U be a subspace of R".

1. U™ is a subspace of R”.
2. {0}t =R" and (R")* = {0}.
3. IfU = span{xq, X3, ..., X} }, then U+ = {x inR" | x-x; =0 fori=1, 2, ..., k}.

Proof.
3. Let U = span{xy, X2, ..., X} }; we must show that Ult= {x|x-x;=0 for each i}. If xisin Ut

then x-x; =0 for all i because each x; is in U. Conversely, suppose that x-x; =0 for all i; we
must show that x is in U, that is, x-y =0 for each y in U. Write y = rix1 +rxa+- -+ riX,
where each r; is in R. Then, using Theorem 5.3.1,

Xy =ri(x-x1)+rx-x) 4+ +nx-x) =r0+rn0+---+r0=0

as required. ]
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Example 8.1.2

Find U+ if U = span{(1, —1, 2, 0), (1, 0, =2, 3)} in R*.

Solution. By Lemma 8.1.2, x = (x, y, z, w) is in U~ if and only if it is orthogonal to both
(1, =1, 2, 0) and (1, 0, —2, 3); that is,

xX—y—+2z =0
X —2z+3w=0

Gaussian elimination gives U+ = span{(2, 4, 1, 0), (3, 3, 0, —1)}.

Now consider vectors x and d # 0 in R3. The projection p =
projq x of x on d was defined in Section 4.2 as in the diagram.

The following formula for p was derived in Theorem 4.2.4

— ; — (xd
b= Proja x= (ud||2> d

where it is shown that x —p is orthogonal to d. Now observe that
the line U = Rd = {td | t € R} is a subspace of R?, that {d} is an
orthogonal basis of U, and that p € U and x —p € U+ (by Theorem 4.2.4).
In this form, this makes sense for any vector x in R” and any subspace U of R", so we generalize
it as follows. If {f}, f5, ..., £,,} is an orthogonal basis of U, we define the projection p of x on U

by the formula
p= (\|f1||2)f1+ (||f2||2>f2+ "t (uf ||2)f (8.1)

Then p € U and (by the orthogonal lemma) x —p € U™, so it looks like we have a generalization of
Theorem 4.2.4.

However there is a potential problem: the formula (8.1) for p must be shown to be independent
of the choice of the orthogonal basis {f, f,, ..., f,}. To verify this, suppose that {f}, £, ..., £}
is another orthogonal basis of U, and write

p'= (||ﬂ\|2)f+(|\f3||2)f3+ *(M)f

As before, p’ € U and x—p’ € U+, and we must show that p’ = p. To see this, write the vector
p —p’ as follows:

p—p'=(x-p)—(x-p)
This vector is in U (because p and p’ are in U) and it is in U+ (because x —p’ and x —p are in
U'), and so it must be zero (it is orthogonal to itself!). This means p’ = p as desired.

Hence, the vector p in equation (8.1) depends only on x and the subspace U, and not on the
choice of orthogonal basis {f], ..., f,,} of U used to compute it. Thus, we are entitled to make the
following definition:
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Definition 8.2 Projection onto a Subspace of R”
Let U be a subspace of R" with orthogonal basis {f, 6, ..., f,}. If x is in R", the vector
. f, £
projy X = feisfi + ffrfa + -+ b
is called the orthogonal projection of x on U. For the zero subspace U = {0}, we define

projggy x =0

The preceding discussion proves (1) of the following theorem.

Theorem 8.1.3: Projection Theorem

If U is a subspace of R" and x is in R", write p = proj;; x. Then:
1. pisinU and x—p is in U*.
2. p is the vector in U closest to x in the sense that

|x—p||<|x—-y| forallycU, y#p

Proof.

1. This is proved in the preceding discussion (it is clear if U = {0}).

2. Write x—y=(x—p)+(p—y). Then p—y is in U and so is orthogonal to x —p by (1).
Hence, the Pythagorean theorem gives

e =yl* = llx=pl*+ lIp—yII* > [x— |
because p —y # 0. This gives (2). n

Example 8.1.3

Let U = span {x1, x,} in R* where x; = (1, 1, 0, 1) and x, = (0, 1, 1, 2). If
x = (3, —1, 0, 2), find the vector in U closest to x and express x as the sum of a vector in
U and a vector orthogonal to U.

Solution. {x, x;} is independent but not orthogonal. The Gram-Schmidt process gives an
orthogonal basis {f], £} of U where f; =x; = (1, 1, 0, 1) and

fr =%y — 3 ||2f1 =x—3f=(-1,0, 1, 1)
Hence, we can compute the projection using {f;, f,}:

p= prOJUX—”fH2f1+”f”2f2—4f1+%1f2:%[5 4 —1 3]
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Thus, p is the vector in U closest to x, and x —p = %(4, —17, 1, 3) is orthogonal to every
vector in U. (This can be verified by checking that it is orthogonal to the generators x; and
xp of U.) The required decomposition of x is thus

x:p—f—(x—p):%(S, 4, —1, 3)—|—%(4, -7, 1, 3)

Example 8.1.4

Find the point in the plane with equation 2x+y—z = 0 that is closest to the point
(2, —1, =3).

Solution. We write R? as rows. The plane is the subspace U whose points (x, y, z) satisfy
z=2x+y. Hence

U={(s, t, 2s+1)|s, t in R} = span{(0, 1, 1), (1, 0, 2)}

The Gram-Schmidt process produces an orthogonal basis {f|, £} of U where f; = (0, 1, 1)
and f, = (1, —1, 1). Hence, the vector in U closest to x = (2, —1, —3) is

proj, x = ﬁfl + ﬁfz = —2f; 4+ 0f, = (0, =2, —2)

Thus, the point in U closest to (2, —1, —3) is (0, —2, —2).

. J

The next theorem shows that projection on a subspace of R" is actually a linear operator
R" — R".

Theorem 8.1.4

Let U be a fixed subspace of R". If we define T : R* — R" by
T(x)= projy x for all x in R"
1. T is a linear operator.
2. imT=U and ker T =U"*.

3. dimU +dim U+ =n.

Proof. If U = {0}, then UL =R", and so T(x) = proj {0y X =0 for all x. Thus T' =0 is the zero
(linear) operator, so (1), (2), and (3) hold. Hence assume that U # {0}.

1. If {f}, £, ..., £,,} is an orthonormal basis of U, then
T(x)=(x-f)fi+x-H)bh+---+(x-£,)f, for all x in R" (8.2)
by the definition of the projection. Thus T is linear because

(x+y)-fi=x-fi+y-fi and (rx)-fi=r(x-f;) for each i
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2. We have im T C U by (8.2) because each f; is in U. But if x is in U, then x = T'(x) by (8.2)
and the expansion theorem applied to the space U. This shows that U Cim T, so imT =U.
Now suppose that x is in U+. Then x-f; =0 for each i (again because each f; is in U) so x is
in ker T by (8.2). Hence U+ C ker T. On the other hand, Theorem 8.1.3 shows that x — T(x)
is in U~ for all x in R”, and it follows that ker T C U*. Hence ker T = U=, proving (2).

3. This follows from (1), (2), and the dimension theorem (Theorem 7.2.4). 0

Exercises for 8.1

Exercise 8.1.1 In each case, use the Gram-
Schmidt algorithm to convert the given basis B of

V into an orthogonal basis.
b. x= 18 (271, =221, 1030) + 182(93 403, 62)

a- V=R, B={(1, -1), (2 1)} d x=11,7, 11,17+ 17, -7, =7, 7)

b. V=R* B={(2, 1), (1, 2)} f. x=5(5a—5b+c—3d, —5a+5b—c+3d, a—
R ) e i
d. V=R B={(0, 1, 1), (1, 1, 1), (1, =2, 2)} 3b—3c+9d)

Exercise 8.1.3 Let x=(1, =2, 1, 6) in R* and
let U = span{(2, 1, 3, —4), (1, 2, 0, 1)}.

a. Compute proj;; x.
b. {(2, 1), (-1, 2)} pute projy
b. Show that {(1, 0, 2, —=3), (4, 7, 1, 2)} is an-
d. {(0, 1, 1), (1, 0, 0), (0, =2, 2)}

other orthogonal basis of U.

Exercise 8.1.2 In each case, write x as the sum of c. Use the basis in part (b) to compute projy x.

a vector in U and a vector in U~.

a. x=(1,5,7),U = span{(1, =2, 3), (-1, 1, 1)}

1 _
b. x=(2, 1, 6), U= span{(3, —1, 2), (2, 0, —3)} a. (=9 3, =21, 33) = 15(-3, 1, =7, 11)

1
c. =5(—63, 21, —147, 231 :— =-3,1, =7, 11
C. X:(3, 1’ 5’ 9), 70( ) ( )

U=span{(L, 0, 1, 1), (0, 1, =1, 1), (=2, 0, I, 1)} gxercise 8.1.4 In ecach case, use the Gram-
Schmidt algorithm to find an orthogonal basis of the
d. x=(20, 1 6), bspace U, and find the vector in U closest t
—span {(1, L, 1, 1), (I, 1, =1, —1), (1, =1, 1, —1)} subspace U, and find the vector in U closest to x.

o x=(a b c. d), a. U=span{(1, 1, 1), (0, I, D}, x=(—1, 2, 1)
U: Span{(la O’ O’ 0)9 (09 17 Oa O)a (Oa 07 19 0)} b U: Span{(l, _1, 0), (_1, O, 1)},X:(2, 1, O)

f. x=(a, b, ¢, d), c. U=span{(1,0,1,0), (1,1, 1,0), (1, 1,0, 0)},
U=span{(1, -1, 2, 0), (—1, 1, 1, 1)} x=(2,0, -1, 3)
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d. U=span{(l, —1,0, 1), (1, 1,0, 0), (1, 1, 0, 1)},Exercise 8.1.10 IfU is a subspace of R"”, show that

x=(2,0, 3, 1)

Exercise 8.1.5 Let U = span{vy, v, ..., Vi}, V;
in R”, and let A be the k X n matrix with the v; as
TOWS.

a. Show that Ut = {x | x in R", Ax” = 0}.

b. Use part (a) to find U+ if
U=span{(l, —1, 2, 1), (1, 0, =1, D}.

b. UJ_ = Span{(l’ 37 1’ 0)’ (_1’ 0’ 0’ 1)}

Exercise 8.1.6

a. Prove part 1 of Lemma 8.1.2.

b. Prove part 2 of Lemma 8.1.2.

Exercise 8.1.7 Let U be a subspace of R". If x in
R" can be written in any way at all as x =p+q
with p in U and q in U', show that necessarily
P = proj x.

Exercise 8.1.8 Let U be a subspace of R" and let
x be a vector in R". Using Exercise 8.1.7, or other-
wise, show that x is in U if and only if x = proj, x.

Write p = proj;; x. Then p is in U by definition. If
x is U, then x —p is in U. But x —p is also in U+
by Theorem 8.1.3, so x —p is in UNU* = {0}. Thus
X =p.

Exercise 8.1.9 Let U be a subspace of R”".

a. Show that Ut =R" if and only if U = {0}.

b. Show that U+ = {0} if and only if U = R".

projy x =x for all x in U.
Let {fi, £, ..., f,} be an orthonormal basis of
U. If x is in U the expansion theorem gives x =
(x-f)fi +(x-£)f +-- -+ (x-£,)f, = proj, x.

Exercise 8.1.11 If U is a subspace of R”, show
that x = proj;; x+ proj; . x for all x in R”.

Exercise 8.1.12 If {f}, ..., f,} is an orthogonal
basis of R" and U = span{fj, ..., f,}, show that
Ut =span{f,.q, ..., £,}.

Exercise 8.1.13 If U is a subspace of R", show
that U+t = U. [Hint: Show that U C U'+, then use
Theorem 8.1.4 (3) twice.]

Exercise 8.1.14 If U is a subspace of R”, show how
to find an n x n matrix A such that U = {x | Ax = 0}.
[Hint: Exercise 8.1.13.]
Let {yy, Y2, ---» Yu} be a basis of U+, and let A be
the n X n matrix with rows le, yg, e, y,7,;, 0,...,0.
Then Ax = 0 if and only if y;-x =0 for each i =
1, 2, ..., m; if and only if x is in Utt=u.

Exercise 8.1.15 Write R"” as rows. If Aisannxn
matrix, write its null space as nullA = {x in R" |
AxT = 0}. Show that:
a) null A= (row A)*; b) null AT = (col A)*.
Exercise 8.1.16 If U and W are subspaces, show
that (U+W)+ =U+NW=. [See Exercise 5.1.22.]

Exercise 8.1.17 Think of R" as consisting of rows.

a. Let E be an n x n matrix, and let
U = {xE | x in R"}. Show that the following
are equivalent.

i. E2=E =ET (E is a projection ma-
trix).

ii. (x—xE)-(yE) =0 for all x and y in R".

iii. proj, x =xE for all x in R". [Hint: For
(ii) implies (iii): Write x =xE + (x —xE)
and use the uniqueness argument pre-
ceding the definition of proj; x. For (iii)
implies (ii): x —xE is in U+ for all x in
R™.]

b. If E is a projection matrix, show that I — E is
also a projection matrix.
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c. If EF=0=FE and E and F are projection (n—1)x (n— 1) matrix obtained from A by deleting
matrices, show that E + F is also a projection column i. Define the vector y in R” by

matrix.
y =[detA; —detA; detAs --- (—1)""! detA,]
d. If A is m x n and AAT is invertible, show that

E = AT(AAT)7'A is a projection matrix. Show that:
a. x;cy=0forall i=1, 2, ..., n—1. [Hint:
Write B; = { )X ] and show that det B; =0.]
d. ET = AT[(AAT)-1]T(AT)T = AT[(AAT)T] 1A = , , o
ATIAAT]"IA = E E2 — AT (AAT) "1 AAT (AAT) 1A = b. y # 0 if and only if {x;, x2, ..., X,—1} is lin-

early independent. [Hint: If some det A; # 0,
the rows of A; are linearly independent. Con-
versely, if the x; are independent, consider
A = UR where R is in reduced row-echelon

AT(AAT)'A=E

Exercise 8.1.18 Let A be an n x n matrix of rank

r. Show that there is an invertible n x n matrix U form.]

such that UA is a row-echelon matrix with the prop-

erty that the first r rows are orthogonal. [Hint: Let c. If {x;, x2, ..., X,—1} is linearly independent,
R be the row-echelon form of A, and use the Gram- use Theorem 8.1.3(3) to show that all solu-
Schmidt process on the nonzero rows of R from the tions to the system of n — 1 homogeneous equa-
bottom up. Use Lemma 2.4.1.] tions

T _
Exercise 8.1.19 Let A be an (n—1) X n matrix Ax =0

with rows x1, X3, ..., X, and let A; denote the are given by ty, t a parameter.
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