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8.1 Orthogonal Complements and Projections

If {v1, . . . , vm} is linearly independent in a general vector space, and if vm+1 is not in span{v1, . . . , vm},
then {v1, . . . , vm, vm+1} is independent (Lemma 6.4.1). Here is the analog for orthogonal sets in
Rn.

Lemma 8.1.1: Orthogonal Lemma

Let {f1, f2, . . . , fm} be an orthogonal set in Rn. Given x in Rn, write

fm+1 = x− x·f1
‖f1‖2 f1 − x·f2

‖f2‖2 f2 −·· ·− x·fm
‖fm‖2 fm

Then:

1. fm+1 · fk = 0 for k = 1, 2, . . . , m.

2. If x is not in span{f1, . . . , fm}, then fm+1 6= 0 and {f1, . . . , fm, fm+1} is an orthogonal
set.

Proof. For convenience, write ti = (x · fi)/‖fi‖2 for each i. Given 1 ≤ k ≤ m:

fm+1 · fk = (x− t1f1 −·· ·− tkfk −·· ·− tmfm) · fk

= x · fk − t1(f1 · fk)−·· ·− tk(fk · fk)−·· ·− tm(fm · fk)

= x · fk − tk‖fk‖2

= 0

This proves (1), and (2) follows because fm+1 6= 0 if x is not in span{f1, . . . , fm}.

The orthogonal lemma has three important consequences for Rn. The first is an extension for
orthogonal sets of the fundamental fact that any independent set is part of a basis (Theorem 6.4.1).

Theorem 8.1.1
Let U be a subspace of Rn.

1. Every orthogonal subset {f1, . . . , fm} in U is a subset of an orthogonal basis of U .

2. U has an orthogonal basis.

Proof.

1. If span{f1, . . . , fm} = U , it is already a basis. Otherwise, there exists x in U outside
span{f1, . . . , fm}. If fm+1 is as given in the orthogonal lemma, then fm+1 is in U and
{f1, . . . , fm, fm+1} is orthogonal. If span{f1, . . . , fm, fm+1} = U , we are done. Otherwise,
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the process continues to create larger and larger orthogonal subsets of U . They are all in-
dependent by Theorem 5.3.5, so we have a basis when we reach a subset containing dim U
vectors.

2. If U = {0}, the empty basis is orthogonal. Otherwise, if f 6= 0 is in U , then {f} is orthogonal,
so (2) follows from (1).

We can improve upon (2) of Theorem 8.1.1. In fact, the second consequence of the orthogonal
lemma is a procedure by which any basis {x1, . . . , xm} of a subspace U of Rn can be systematically
modified to yield an orthogonal basis {f1, . . . , fm} of U . The fi are constructed one at a time from
the xi.

To start the process, take f1 = x1. Then x2 is not in span{f1} because {x1, x2} is independent,
so take

f2 = x2 − x2·f1
‖f1‖2 f1

Thus {f1, f2} is orthogonal by Lemma 8.1.1. Moreover, span{f1, f2}= span{x1, x2} (verify), so x3
is not in span{f1, f2}. Hence {f1, f2, f3} is orthogonal where

f3 = x3 − x3·f1
‖f1‖2 f1 − x3·f2

‖f2‖2 f2

Again, span{f1, f2, f3}= span{x1, x2, x3}, so x4 is not in span{f1, f2, f3} and the process continues.
At the mth iteration we construct an orthogonal set {f1, . . . , fm} such that

span{f1, f2, . . . , fm}= span{x1, x2, . . . , xm}=U

Hence {f1, f2, . . . , fm} is the desired orthogonal basis of U . The procedure can be summarized as
follows.



402 CONTENTS

0

x3

f2

f1
span{f1, f2}

Gram-Schmidt

0

f3

f2

f1
span{f1, f2}

Theorem 8.1.2: Gram-Schmidt Orthogonalization Al-
gorithm1

If {x1, x2, . . . , xm} is any basis of a subspace U of Rn,
construct f1, f2, . . . , fm in U successively as follows:

f1 = x1

f2 = x2 − x2·f1
‖f1‖2 f1

f3 = x3 − x3·f1
‖f1‖2 f1 − x3·f2

‖f2‖2 f2
...
fk = xk − xk·f1

‖f1‖2 f1 − xk·f2
‖f2‖2 f2 −·· ·− xk·fk−1

‖fk−1‖2 fk−1

for each k = 2, 3, . . . , m. Then

1. {f1, f2, . . . , fm} is an orthogonal basis of U .

2. span{f1, f2, . . . , fk}= span{x1, x2, . . . , xk} for each
k = 1, 2, . . . , m.

The process (for k = 3) is depicted in the diagrams. Of course, the algorithm converts any basis
of Rn itself into an orthogonal basis.

Example 8.1.1

Find an orthogonal basis of the row space of A =

 1 1 −1 −1
3 2 0 1
1 0 1 0

.

Solution. Let x1, x2, x3 denote the rows of A and observe that {x1, x2, x3} is linearly
independent. Take f1 = x1. The algorithm gives

f2 = x2 − x2·f1
‖f1‖2 f1 = (3, 2, 0, 1)− 4

4(1, 1, −1, −1) = (2, 1, 1, 2)

f3 = x3 − x3·f1
‖f1‖2 f1 − x3·f2

‖f2‖2 f2 = x3 − 0
4f1 − 3

10f2 =
1

10(4, −3, 7, −6)

Hence {(1, 1, −1, −1), (2, 1, 1, 2), 1
10(4, −3, 7, −6)} is the orthogonal basis provided by

the algorithm. In hand calculations it may be convenient to eliminate fractions (see the
Remark below), so {(1, 1, −1, −1), (2, 1, 1, 2), (4, −3, 7, −6)} is also an orthogonal
basis for row A.

1Erhardt Schmidt (1876–1959) was a German mathematician who studied under the great David Hilbert and later
developed the theory of Hilbert spaces. He first described the present algorithm in 1907. Jörgen Pederson Gram
(1850–1916) was a Danish actuary.
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Remark
Observe that the vector x·fi

‖fi‖2 fi is unchanged if a nonzero scalar multiple of fi is used in place of fi.
Hence, if a newly constructed fi is multiplied by a nonzero scalar at some stage of the Gram-Schmidt
algorithm, the subsequent fs will be unchanged. This is useful in actual calculations.

Projections

x

p

x−p
0

U

Suppose a point x and a plane U through the origin in R3 are given,
and we want to find the point p in the plane that is closest to x.
Our geometric intuition assures us that such a point p exists. In
fact (see the diagram), p must be chosen in such a way that x−p is
perpendicular to the plane.

Now we make two observations: first, the plane U is a subspace
of R3 (because U contains the origin); and second, that the condition that x−p is perpendicular
to the plane U means that x−p is orthogonal to every vector in U . In these terms the whole
discussion makes sense in Rn. Furthermore, the orthogonal lemma provides exactly what is needed
to find p in this more general setting.

Definition 8.1 Orthogonal Complement of a Subspace of Rn

If U is a subspace of Rn, define the orthogonal complement U⊥ of U (pronounced
“U-perp”) by

U⊥ = {x in Rn | x ·y = 0 for all y in U}

The following lemma collects some useful properties of the orthogonal complement; the proof of
(1) and (2) is left as Exercise 8.1.6.

Lemma 8.1.2
Let U be a subspace of Rn.

1. U⊥ is a subspace of Rn.

2. {0}⊥ = Rn and (Rn)⊥ = {0}.

3. If U = span{x1, x2, . . . , xk}, then U⊥ = {x in Rn | x ·xi = 0 for i = 1, 2, . . . , k}.

Proof.
3. Let U = span{x1, x2, . . . , xk}; we must show that U⊥ = {x | x ·xi = 0 for each i}. If x is in U⊥

then x ·xi = 0 for all i because each xi is in U . Conversely, suppose that x ·xi = 0 for all i; we
must show that x is in U⊥, that is, x ·y= 0 for each y in U . Write y= r1x1+r2x2+ · · ·+rkxk,
where each ri is in R. Then, using Theorem 5.3.1,

x ·y = r1(x ·x1)+ r2(x ·x2)+ · · ·+ rk(x ·xk) = r10+ r20+ · · ·+ rk0 = 0

as required.
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Example 8.1.2

Find U⊥ if U = span{(1, −1, 2, 0), (1, 0, −2, 3)} in R4.

Solution. By Lemma 8.1.2, x = (x, y, z, w) is in U⊥ if and only if it is orthogonal to both
(1, −1, 2, 0) and (1, 0, −2, 3); that is,

x − y + 2z = 0
x − 2z + 3w = 0

Gaussian elimination gives U⊥ = span{(2, 4, 1, 0), (3, 3, 0, −1)}.

x

0

p
d

U

Now consider vectors x and d 6= 0 in R3. The projection p =
projd x of x on d was defined in Section 4.2 as in the diagram.

The following formula for p was derived in Theorem 4.2.4

p = projd x =
(

x·d
‖d‖2

)
d

where it is shown that x−p is orthogonal to d. Now observe that
the line U = Rd = {td | t ∈ R} is a subspace of R3, that {d} is an

orthogonal basis of U , and that p ∈U and x−p ∈U⊥ (by Theorem 4.2.4).
In this form, this makes sense for any vector x in Rn and any subspace U of Rn, so we generalize

it as follows. If {f1, f2, . . . , fm} is an orthogonal basis of U , we define the projection p of x on U
by the formula

p =
(

x·f1
‖f1‖2

)
f1 +

(
x·f2
‖f2‖2

)
f2 + · · ·+

(
x·fm
‖fm‖2

)
fm (8.1)

Then p ∈U and (by the orthogonal lemma) x−p ∈U⊥, so it looks like we have a generalization of
Theorem 4.2.4.

However there is a potential problem: the formula (8.1) for p must be shown to be independent
of the choice of the orthogonal basis {f1, f2, . . . , fm}. To verify this, suppose that {f′1, f′2, . . . , f′m}
is another orthogonal basis of U , and write

p′ =
(

x·f′1
‖f′1‖2

)
f′1 +

(
x·f′2
‖f′2‖2

)
f′2 + · · ·+

(
x·f′m
‖f′m‖2

)
f′m

As before, p′ ∈ U and x−p′ ∈ U⊥, and we must show that p′ = p. To see this, write the vector
p−p′ as follows:

p−p′ = (x−p′)− (x−p)

This vector is in U (because p and p′ are in U) and it is in U⊥ (because x−p′ and x−p are in
U⊥), and so it must be zero (it is orthogonal to itself!). This means p′ = p as desired.

Hence, the vector p in equation (8.1) depends only on x and the subspace U , and not on the
choice of orthogonal basis {f1, . . . , fm} of U used to compute it. Thus, we are entitled to make the
following definition:
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Definition 8.2 Projection onto a Subspace of Rn

Let U be a subspace of Rn with orthogonal basis {f1, f2, . . . , fm}. If x is in Rn, the vector

projU x = x·f1
‖f1‖2 f1 +

x·f2
‖f2‖2 f2 + · · ·+ x·fm

‖fm‖2 fm

is called the orthogonal projection of x on U . For the zero subspace U = {0}, we define

proj{0} x = 0

The preceding discussion proves (1) of the following theorem.

Theorem 8.1.3: Projection Theorem

If U is a subspace of Rn and x is in Rn, write p = projU x. Then:

1. p is in U and x−p is in U⊥.

2. p is the vector in U closest to x in the sense that

‖x−p‖< ‖x−y‖ for all y ∈U , y 6= p

Proof.

1. This is proved in the preceding discussion (it is clear if U = {0}).

2. Write x−y = (x−p)+ (p−y). Then p−y is in U and so is orthogonal to x−p by (1).
Hence, the Pythagorean theorem gives

‖x−y‖2 = ‖x−p‖2 +‖p−y‖2 > ‖x−p‖2

because p−y 6= 0. This gives (2).

Example 8.1.3

Let U = span{x1, x2} in R4 where x1 = (1, 1, 0, 1) and x2 = (0, 1, 1, 2). If
x = (3, −1, 0, 2), find the vector in U closest to x and express x as the sum of a vector in
U and a vector orthogonal to U .

Solution. {x1, x2} is independent but not orthogonal. The Gram-Schmidt process gives an
orthogonal basis {f1, f2} of U where f1 = x1 = (1, 1, 0, 1) and

f2 = x2 − x2·f1
‖f1‖2 f1 = x2 − 3

3f1 = (−1, 0, 1, 1)

Hence, we can compute the projection using {f1, f2}:

p = projU x = x·f1
‖f1‖2 f1 +

x·f2
‖f2‖2 f2 =

4
3f1 +

−1
3 f2 =

1
3

[
5 4 −1 3

]
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Thus, p is the vector in U closest to x, and x−p = 1
3(4, −7, 1, 3) is orthogonal to every

vector in U . (This can be verified by checking that it is orthogonal to the generators x1 and
x2 of U .) The required decomposition of x is thus

x = p+(x−p) = 1
3(5, 4, −1, 3)+ 1

3(4, −7, 1, 3)

Example 8.1.4

Find the point in the plane with equation 2x+ y− z = 0 that is closest to the point
(2, −1, −3).

Solution. We write R3 as rows. The plane is the subspace U whose points (x, y, z) satisfy
z = 2x+ y. Hence

U = {(s, t, 2s+ t) | s, t in R}= span{(0, 1, 1), (1, 0, 2)}

The Gram-Schmidt process produces an orthogonal basis {f1, f2} of U where f1 = (0, 1, 1)
and f2 = (1, −1, 1). Hence, the vector in U closest to x = (2, −1, −3) is

projU x = x·f1
‖f1‖2 f1 +

x·f2
‖f2‖2 f2 =−2f1 +0f2 = (0, −2, −2)

Thus, the point in U closest to (2, −1, −3) is (0, −2, −2).

The next theorem shows that projection on a subspace of Rn is actually a linear operator
Rn → Rn.

Theorem 8.1.4
Let U be a fixed subspace of Rn. If we define T : Rn → Rn by

T (x) = projU x for all x in Rn

1. T is a linear operator.

2. im T =U and ker T =U⊥.

3. dim U + dim U⊥ = n.

Proof. If U = {0}, then U⊥ = Rn, and so T (x) = proj{0} x = 0 for all x. Thus T = 0 is the zero
(linear) operator, so (1), (2), and (3) hold. Hence assume that U 6= {0}.

1. If {f1, f2, . . . , fm} is an orthonormal basis of U , then

T (x) = (x · f1)f1 +(x · f2)f2 + · · ·+(x · fm)fm for all x in Rn (8.2)

by the definition of the projection. Thus T is linear because

(x+y) · fi = x · fi +y · fi and (rx) · fi = r(x · fi) for each i
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2. We have im T ⊆U by (8.2) because each fi is in U . But if x is in U , then x = T (x) by (8.2)
and the expansion theorem applied to the space U . This shows that U ⊆ im T , so im T =U .
Now suppose that x is in U⊥. Then x · fi = 0 for each i (again because each fi is in U) so x is
in ker T by (8.2). Hence U⊥ ⊆ ker T . On the other hand, Theorem 8.1.3 shows that x−T (x)
is in U⊥ for all x in Rn, and it follows that ker T ⊆U⊥. Hence ker T =U⊥, proving (2).

3. This follows from (1), (2), and the dimension theorem (Theorem 7.2.4).

Exercises for 8.1

Exercise 8.1.1 In each case, use the Gram-
Schmidt algorithm to convert the given basis B of
V into an orthogonal basis.

a. V = R2, B = {(1, −1), (2, 1)}

b. V = R2, B = {(2, 1), (1, 2)}

c. V = R3, B = {(1, −1, 1), (1, 0, 1), (1, 1, 2)}

d. V = R3, B = {(0, 1, 1), (1, 1, 1), (1, −2, 2)}

b. {(2, 1), 3
5(−1, 2)}

d. {(0, 1, 1), (1, 0, 0), (0, −2, 2)}

Exercise 8.1.2 In each case, write x as the sum of
a vector in U and a vector in U⊥.

a. x = (1, 5, 7), U = span{(1, −2, 3), (−1, 1, 1)}

b. x = (2, 1, 6), U = span{(3, −1, 2), (2, 0, −3)}

c. x = (3, 1, 5, 9),
U = span{(1, 0, 1, 1), (0, 1, −1, 1), (−2, 0, 1, 1)}

d. x = (2, 0, 1, 6),
U = span{(1, 1, 1, 1), (1, 1, −1, −1), (1, −1, 1, −1)}

e. x = (a, b, c, d),
U = span{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)}

f. x = (a, b, c, d),
U = span{(1, −1, 2, 0), (−1, 1, 1, 1)}

b. x = 1
182(271, −221, 1030)+ 1

182(93, 403, 62)

d. x = 1
4(1, 7, 11, 17)+ 1

4(7, −7, −7, 7)

f. x = 1
12(5a−5b+c−3d, −5a+5b−c+3d, a−

b+11c+3d, −3a+3b+3c+3d)+ 1
12(7a+5b−

c+3d, 5a+7b+ c−3d, −a+b+ c−3d, 3a−
3b−3c+9d)

Exercise 8.1.3 Let x = (1, −2, 1, 6) in R4, and
let U = span{(2, 1, 3, −4), (1, 2, 0, 1)}.

a. Compute projU x.

b. Show that {(1, 0, 2, −3), (4, 7, 1, 2)} is an-
other orthogonal basis of U .

c. Use the basis in part (b) to compute projU x.

a. 1
10(−9, 3, −21, 33) = 3

10(−3, 1, −7, 11)

c. 1
70(−63, 21, −147, 231) = 3

10(−3, 1, −7, 11)

Exercise 8.1.4 In each case, use the Gram-
Schmidt algorithm to find an orthogonal basis of the
subspace U , and find the vector in U closest to x.

a. U = span{(1, 1, 1), (0, 1, 1)}, x = (−1, 2, 1)

b. U = span{(1, −1, 0), (−1, 0, 1)}, x= (2, 1, 0)

c. U = span{(1, 0, 1, 0), (1, 1, 1, 0), (1, 1, 0, 0)},
x = (2, 0, −1, 3)
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d. U = span{(1, −1, 0, 1), (1, 1, 0, 0), (1, 1, 0, 1)},
x = (2, 0, 3, 1)

b. {(1, −1, 0), 1
2(−1, −1, 2)}; projU x =

(1, 0, −1)

d. {(1, −1, 0, 1), (1, 1, 0, 0), 1
3(−1, 1, 0, 2)};

projU x = (2, 0, 0, 1)

Exercise 8.1.5 Let U = span{v1, v2, . . . , vk}, vi

in Rn, and let A be the k× n matrix with the vi as
rows.

a. Show that U⊥ = {x | x in Rn, AxT = 0}.

b. Use part (a) to find U⊥ if
U = span{(1, −1, 2, 1), (1, 0, −1, 1)}.

b. U⊥ = span{(1, 3, 1, 0), (−1, 0, 0, 1)}

Exercise 8.1.6

a. Prove part 1 of Lemma 8.1.2.

b. Prove part 2 of Lemma 8.1.2.

Exercise 8.1.7 Let U be a subspace of Rn. If x in
Rn can be written in any way at all as x = p+q
with p in U and q in U⊥, show that necessarily
p = projU x.

Exercise 8.1.8 Let U be a subspace of Rn and let
x be a vector in Rn. Using Exercise 8.1.7, or other-
wise, show that x is in U if and only if x = projU x.

Write p = projU x. Then p is in U by definition. If
x is U , then x−p is in U . But x−p is also in U⊥

by Theorem 8.1.3, so x−p is in U ∩U⊥ = {0}. Thus
x = p.

Exercise 8.1.9 Let U be a subspace of Rn.

a. Show that U⊥ = Rn if and only if U = {0}.

b. Show that U⊥ = {0} if and only if U = Rn.

Exercise 8.1.10 If U is a subspace of Rn, show that
projU x = x for all x in U .
Let {f1, f2, . . . , fm} be an orthonormal basis of
U . If x is in U the expansion theorem gives x =
(x · f1)f1 +(x · f2)f2 + · · ·+(x · fm)fm = projU x.

Exercise 8.1.11 If U is a subspace of Rn, show
that x = projU x+ projU⊥ x for all x in Rn.

Exercise 8.1.12 If {f1, . . . , fn} is an orthogonal
basis of Rn and U = span{f1, . . . , fm}, show that
U⊥ = span{fm+1, . . . , fn}.

Exercise 8.1.13 If U is a subspace of Rn, show
that U⊥⊥ =U . [Hint: Show that U ⊆U⊥⊥, then use
Theorem 8.1.4 (3) twice.]

Exercise 8.1.14 If U is a subspace of Rn, show how
to find an n×n matrix A such that U = {x | Ax = 0}.
[Hint: Exercise 8.1.13.]
Let {y1, y2, . . . , ym} be a basis of U⊥, and let A be
the n×n matrix with rows yT

1 , yT
2 , . . . , yT

m, 0, . . . , 0.
Then Ax = 0 if and only if yi ·x = 0 for each i =
1, 2, . . . , m; if and only if x is in U⊥⊥ =U .

Exercise 8.1.15 Write Rn as rows. If A is an n×n
matrix, write its null space as null A = {x in Rn |
AxT = 0}. Show that:

null A = ( row A)⊥;a) null AT = (col A)⊥.b)

Exercise 8.1.16 If U and W are subspaces, show
that (U +W )⊥ =U⊥∩W⊥. [See Exercise 5.1.22.]

Exercise 8.1.17 Think of Rn as consisting of rows.

a. Let E be an n×n matrix, and let
U = {xE | x in Rn}. Show that the following
are equivalent.

i. E2 = E = ET (E is a projection ma-
trix).

ii. (x−xE) · (yE) = 0 for all x and y in Rn.

iii. projU x = xE for all x in Rn. [Hint: For
(ii) implies (iii): Write x=xE+(x−xE)
and use the uniqueness argument pre-
ceding the definition of projU x. For (iii)
implies (ii): x−xE is in U⊥ for all x in
Rn.]

b. If E is a projection matrix, show that I −E is
also a projection matrix.
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c. If EF = 0 = FE and E and F are projection
matrices, show that E +F is also a projection
matrix.

d. If A is m×n and AAT is invertible, show that
E = AT (AAT )−1A is a projection matrix.

d. ET = AT [(AAT )−1]T (AT )T = AT [(AAT )T ]−1A =
AT [AAT ]−1A=E E2 =AT (AAT )−1AAT (AAT )−1A=
AT (AAT )−1A = E

Exercise 8.1.18 Let A be an n×n matrix of rank
r. Show that there is an invertible n× n matrix U
such that UA is a row-echelon matrix with the prop-
erty that the first r rows are orthogonal. [Hint: Let
R be the row-echelon form of A, and use the Gram-
Schmidt process on the nonzero rows of R from the
bottom up. Use Lemma 2.4.1.]

Exercise 8.1.19 Let A be an (n− 1)× n matrix
with rows x1, x2, . . . , xn−1 and let Ai denote the

(n−1)× (n−1) matrix obtained from A by deleting
column i. Define the vector y in Rn by

y =
[

det A1 − det A2 det A3 · · · (−1)n+1 det An
]

Show that:

a. xi · y = 0 for all i = 1, 2, . . . , n − 1. [Hint:

Write Bi =

[
xi

A

]
and show that det Bi = 0.]

b. y 6= 0 if and only if {x1, x2, . . . , xn−1} is lin-
early independent. [Hint: If some det Ai 6= 0,
the rows of Ai are linearly independent. Con-
versely, if the xi are independent, consider
A = UR where R is in reduced row-echelon
form.]

c. If {x1, x2, . . . , xn−1} is linearly independent,
use Theorem 8.1.3(3) to show that all solu-
tions to the system of n−1 homogeneous equa-
tions

AxT = 0

are given by ty, t a parameter.
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